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a b s t r a c t

Voids at the tunnel–soil interface are not normally considered when predicting ground

vibration from underground railways. The soil is generally assumed to be continuously

bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of

voids around underground railways motivated the study presented herein to quantify

include such voids at the tunnel–soil interface. A semi-analytical method is developed

which derives discrete transfers for the coupled tunnel–soil model based on the

continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate

nodes at the interface to prevent force transfer between the systems. The results from

this investigation show that relatively small voids (4 m� 903) can significantly affect

the rms velocity predictions in the near-field and moderately affect predictions in the

far-field. Sensitivity of the predictions to void length and void sector angle are both

deemed to be significant. The findings from this study suggest that the uncertainty

associated with assuming a perfect bond at the tunnel–soil interface in an area with

known voidage can reasonably reach 75 dB and thus should be considered in the

design process.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Underground railways in urban centers are an efficient and economic means of mass transport. Urban rail systems are
increasingly promoted as developments in tunneling, rail and train technologies allow old lines to be upgraded and new
lines to be constructed under existing city infrastructure. Ground-borne vibration from these underground railways can
impair human comfort and activity, damage buildings, or cause malfunctioning of sensitive equipment [1,2]. It is reported
that individuals experience greater levels of disturbance due to rail noise [3] than from aircraft or road traffic [4–7]. This is
attributed to the multiple ways people experience railway induced vibrations: air-borne noise, vibratory motion of the
floors, and re-radiated noise both in the room and from household objects.

The frequency range of interest is between 5 and 200 Hz as listed in BS 6472:1992 [1] and BS ISO 14837–1[8]. Higher
frequencies are generally attenuated rapidly with distance along the transmission path through the soil [9]; lower
frequencies are weakly excited and generally below the threshold of human perception [10,11]. The vibrations of interest
arise principally from the quasi-static load of the train moving along the track [12], general wheel and rail unevenness, and
periodic changes in rail-support stiffness when sleepers are present [13]. The draft standard BS ISO 14837-2 quantifies
acceptable vibration levels from new underground railways.
ll rights reserved.
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Designers of underground railways and surrounding buildings rely on vibration predictions from numerical simulations
to ensure that vibration does not exceed specified levels; failure to meet the specifications can result in costly retrofitting
of vibration countermeasures. A number of different numerical methods are currently used to predict ground vibration due
to underground railways where semi-analytical methods, finite-element (FE) methods and boundary-element (BE)
methods are the most common. Both two-dimensional [14,15] and three-dimensional [16–18] models based on FE and BE
techniques have been developed but each suffers from its own set of difficulties. Andersen and Jones [19] compare coupled
FE–BE models in 2D and 3D showing that while 2D models require less computation effort they prove to be only
qualitatively useful when simulating structural changes. Three-dimensional models provide quantitative results but
require significantly more computational effort than 2D models.

To combine the benefits of 2D and 3D models, Sheng et al. [20–22] simulate a tunnel buried in a half-space using a
coupled FE–BE model derived using the discrete wavenumber fictitious force method. The boundary integral equation is
written solely in terms of the displacement Green’s function, proving to be more computationally efficient than standard
boundary-element techniques which also require a traction Green’s function. The method assumes the model geometry is
invariant in the tunnel’s axial direction which simplifies the model into a ‘‘two-and-a-half’’ dimensional problem.
Degrande et al. [23,24] use the homogeneity along the tunnel in a slightly different manner. The periodicity of the tunnel
and the soil is exploited using the Floquet transform, limiting the discretization to a single bounded reference cell of the
tunnel modelled using the coupled FE–BE method. The authors state that this is a major advantage compared to the
standard 2.5D approach because the use of periodic cells rather than 2D slices allows any type of loading, including point
forces, to be more easily simulated. Gupta et al. have used this method in a number of published studies including the
prediction of vibrations due to underground railways in Beijing [25] and the investigation of tunnel and soil parameters on
ground vibration [26]. Forrest and Hunt [13,27,28] present a computationally efficient, three-dimensional semi-analytical
model for calculating vibration from underground railways, known as Pipe-in-Pipe (PiP). A cylindrical tunnel and
surrounding soil are modelled as two concentric pipes; the inner-pipe (i.e. the tunnel) is modelled using thin-shell theory
and the outer-pipe (i.e. the soil) is modelled using elastic continuum theory and assumed to have an infinite outer radius
simulating a fullspace. The PiP model has been validated against the FE–BE–Floquet model [29] and shown to have good
agreement. Hussein and Hunt [30–32] have since extended the model to include discontinuous floating-slab track, soil
layering and a free-surface. However, none of these models have been used to investigate the importance of voids at the
tunnel–soil interface.

A simplifying assumption frequently made is that the soil is in continuous contact with the tunnel (i.e. no voids or gaps
at the tunnel–soil interface). Subsidence and frost-heave have been shown to cause significant soil movement around
tunnels [33–35]; under such large-scale motion it is likely that a void will form over a section of the tunnel, disrupting the
perfect bond at the tunnel–soil interface. Voids may also develop during construction of new buildings in close proximity
to the underground tunnels due to pile-driving, excavation, landscaping, etc. The extent of voidage is difficult, if not
impossible, to quantify but the existence of voids is not in doubt.

The goal of the current investigation is to quantify the effect of voids at the tunnel–soil interface and determine the
level of uncertainty associated with neglecting to include voids in numerical simulations of underground railways.
Development of a fully analytical model including a finite sized void arbitrarily located around the tunnel was deemed
intractable thus a semi-analytical approach is adopted. The PiP method is used to determine the discrete transfer functions
for both the tunnel and the surrounding soil nodes. The transfer matrices are coupled using continuity and equilibrium
conditions. The void is simulated by uncoupling the appropriate tunnel and soil nodes, inhibiting the transfer of forces
between the two subsystems over a finite patch.

The current paper is broken into three sections. Section 2 presents the model and details how a void at the tunnel–soil
interface is simulated; the theory of random-process moving loads is also introduced in this section. Section 3 compares
the results from the discrete formulation to the PiP solution for a continuous tunnel–soil interface to validate the
model. Section 4 presents near- and far-field soil vibration results due to a moving load in a tunnel containing a void at the
tunnel–soil interface.
2. Model description

An idealized underground railway tunnel can be thought of as a thin-walled cylinder (i.e. the tunnel) coupled to the
inside surface of a thick-walled cylinder (i.e. the surrounding soil), as shown in Fig. 1. If the outer radius of the thick-walled
cylinder is assumed to be infinite (R2 in Fig. 1(right)), this Pipe-in-Pipe arrangement provides the analytical solution for a
buried, circular tunnel in a fullspace.

Forrest [13] derives the governing equations of motion for an infinitely long, thin-walled cylinder subjected to a radially
acting point-load as

~Un ¼
~Htunnel

~Pn (1)

where ~Un and ~Pn are the cylindrical displacement and load vectors, respectively, in the fZ y RgT directions; ~Htunnel is a 3�3
matrix whose elements are given in the Appendix. The capitalization of the variables indicates the frequency domain, the
tilde indicates the wavenumber domain, while the subindex n refers to the corresponding ring-mode.



Fig. 1. Schematic of Pipe-in-Pipe arrangement: inner-pipe representing the tunnel modelled as a thin-walled cylinder (left) and outer-pipe representing

the soil with outer radius R2 ¼1 (right).
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Similarly, the governing equations of motion for an infinitely long, thick-walled cylinder subjected to a radially acting
point-load is

~Un ¼
~Hsoil

~Pn (2)

where the elements of ~Hsoil are also given in the Appendix.
Coupling the two cylinders results in the development of reaction forces at the interface; the coupling equations of

motion are

~U
tunnel

n ¼ ~Htunnel
~Fnþ

~Htunnel
~R

tunnel

n (3)

~U
soil

n ¼
~Hsoil

~R
soil

n (4)

where ~Fn is the load applied to the inside of the tunnel and ~Rn is the resultant load between the tunnel and the soil at the
cylindrical interface. Continuity of displacements and equilibrium of reaction forces at the interface state

~U
tunnel

n ¼ ~U
soil

n �
~Un (5)

~R
tunnel

n ¼� ~R
soil

n (6)

thus the coupled equations of motion for the system can be written as

~Un ¼ ðIþ ~Htunnel
~H
�1

soilÞ
�1 ~Htunnel

~Fn (7)

It is convenient to recognize that ~Htunnel
~Fn is equivalent to the displacements of the unconstrained tunnel (i.e. before

being coupled to the soil). Let this displacement be referred to as the ‘‘original’’ displacement allowing the equation to be
written as

~Un ¼ ðIþ ~Htunnel
~H
�1

soilÞ
�1 ~U

orig

n (8)

This form of the displacement equation is equivalent to that given by Forrest [13]; it is presented in this altered form for
use in extending the model to account for voids.

The actual displacements and loads are in general linear combinations of an infinite number of ring-modes. For a
radially acting point-load, the displacements are symmetric about the load with the axial and radial displacements even
functions of y and the circumferential displacements an odd function of y. The displacement and load vectors can therefore
be written as

~UZ

~Uy
~UR

8><
>:

9>=
>;¼

~UZ0

0
~U R0

8><
>:

9>=
>;þ

X1
n ¼ 1

~UZncos ny
~Uynsin ny
~U Rncos ny

8><
>:

9>=
>; (9)

~F Zn ¼ 0

~F yn ¼ 0

~F Rn ¼
1=2pa, n¼ 0

1=pa, nZ1

(
(10)

where y is the radial angle coordinate measured from the location of the point-load. Eq. (9) is also valid for an axially acting
point-load since ~UZ and ~U R are again even functions of y about the point-load and ~Uy is an odd function of y. Hussein [30]
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shows that for a circumferentially acting point-load the conditions switch, thus

~U Z

~Uy
~UR

8><
>:

9>=
>;¼

0
~Uy0

0

8><
>:

9>=
>;þ

X1
n ¼ 1

~UZnsin ny
~Uyncos ny
~URnsin ny

8><
>:

9>=
>; (11)

and certain elements of the matrices ~Htunnel and ~Hsoil change sign as detailed in the Appendix. The magnitude of a point-
load in the frequency/wavenumber/ring-mode domain for the axial and circumferential directions is equivalent to that
given in Eq. (10) for the radial direction.

2.1. Inclusion of floating-slab track in PiP model

A popular method of installing railway track in underground railways is to use a floating-slab track (FST) system. Rather
than employing traditional wooden sleepers and crushed stone ballast, the rails are fastened to a concrete slab which sits
on the base of the tunnel invert. To reduce vibration transmission the rails are generally mounted on resilient rubber
railpads and the slab on rubber or steel-spring slab bearings as depicted in Fig. 2.

Forrest and Hussein have extensively investigated the modelling of FST (both continuous and discontinuous) using the
PiP method for non-moving and moving loads [27,28,13,32,31,30]. A simple, continuous FST subjected to a quasi-static
moving load is included in the current investigation; the more complex systems could be included using the methods
derived in the referenced literature.

A schematic of the continuous FST model is shown in Fig. 3 where it has been simplified to a 2D system; the two rails
are assumed to receive identical vertical inputs thus they are combined to a single beam. The rail and slab are modelled as
Euler–Bernoulli beams with mass per unit length m and bending stiffness EI. The railpads and slab bearings are modelled as
continuous layers of elastic support with stiffness per unit length k and associated loss factor Z; the resulting complex
stiffness is given by k� ¼ kð1þ iZÞ. The slab-bearing is assumed to only be in contact with the tunnel along the bottom of the
invert (i.e. equivalent to a line-load). The FST properties used herein are given in Table 1 which approximate UIC60 rails on
a standard continuous slab as used by Hussein [32].

The transfer function for an Euler–Bernoulli beam is [36]

~Hbeamðx,oÞ ¼ 1

ðEIx4
�mo2Þ

(12)

where m is the mass per unit length, E is the elastic modulus, I is the second moment of area, o is the frequency and x is the
wavenumber in the x-direction as defined in Fig. 3.
Fig. 2. Underground railway cut-away showing floating-slab track.

Fig. 3. Floating-slab track on tunnel invert.

Table 1
Floating-slab track properties.

Rail beam Slab beam
mrail = 120.6 kg/m mslab = 3500 kg/m

EIrail = 12.9 MPa m4 EIslab = 1430 MPa m4

Railpad Slab-bearing
krail = 200 MN/m/m kslab = 5 MN/m/m

Zrail ¼ 0:3 Zslab ¼ 0:5
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It is necessary to determine the transfer function for the FST assembly shown in Fig. 3 giving the displacements at the
tunnel due to a load on the rail; this will be used to facilitate loading in the coupled tunnel–soil model. The transfer
function is derived by enforcing displacement continuity and force equilibrium across the railpads and slab bearings
resulting in

~U rail

~U tunnel

( )
¼

~Hrr
~Hrt

~Htr
~Htt

( )
~F rail

~F tunnel

( )
(13)

where

~Hrr ¼
~H tunnelð1þk�slab

~HssÞ

ð1þk�slab
~Hssþk�slab

~H tunnelÞ

~Hrs ¼
k�rail

~Hrail
~Hslab

ð1þk�rail
~Hslabþk�rail

~HrailÞ
¼ ~Hsr

~Hss ¼
~Hslabð1þk�rail

~HrailÞ

ð1þk�rail
~Hslabþk�rail

~HrailÞ

~Hrt ¼
k�slab

~Hrs
~H tunnel

ð1þk�slab
~Hssþk�slab

~HtunnelÞ
¼ ~Htr

~Htt ¼
~Hssð1þk�slab

~HtunnelÞ

ð1þk�slab
~Hssþk�slab

~H tunnelÞ
(14)

~H tunnel is the RR component of ~Htunnel as defined in Eq. (1).
Recall Eq. (8) which gives the coupled tunnel–soil interface displacements as a function of the original free-tunnel

displacements

~Un ¼ ðIþ ~Htunnel
~H
�1

soilÞ
�1 ~U

orig

n

Eq. (13) can be used to determine ~U
orig

n by setting ~F tunnel ¼ 0 giving

~U
orig

n ¼ ~Htr
~F

rail

n (15)

If the load applied to the rail is assumed to be a point-load in the spatial domain, the load in the wavenumber domain is

~F
rail

n ¼
1=2pa, n¼ 0

1=pa, nZ1

(
(16)

as defined in Eq. (10).
It should be noted that ~Htunnel in Eq. (8) is not adjusted to account for the presence of the FST when solving for the

coupled tunnel–soil interface displacements. It was found the increased stiffness due to the FST was negligible compared to
the concrete tunnel thus was neglected for simplicity.

During the derivation of the coupled tunnel–soil displacement equation it is assumed that the tunnel is in continuous
contact with the soil, thus the PiP model in its standard form does not allow for discrete sections of the tunnel to be
uncoupled from the soil. To investigate the effect of voids around the tunnel, the method is extended by discretizing the
tunnel–soil interface.
2.2. Discrete tunnel–soil interface

To simulate voids using the PiP model the interface is discretized into a number of nodes with their respective transfer
functions determined using the continuous solution. Once the global transfer function matrix for the interface is calculated,
particular nodes can be uncoupled to simulate the void at the tunnel–soil interface.

Consider an example case shown in Fig. 4, where the circumference of the tunnel is discretized into eight nodes. A single
unit point-load is applied in the positive radial direction at node 1, causing displacements at all nodes (displacements only
depicted at nodes 1 and 3 for clarity). The nodal loading the R-direction can be written as

~FR ¼ ½1 0 0 0 0 0 0 0�T (17)

The Fourier transform of this force is

~FRn ¼ ½1 1 1 1 1 1 1 1�T (18)

where the subscript n indicates the ring-mode domain; the discrete Fourier transform (DFT) is used to perform the
transforms in this model.



Fig. 4. Circumferential discretization of tunnel; example tunnel circumference discretized by eight nodes with a point-load applied radially at node 1,

showing cylindrical coordinate directions.
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The displacements in the ring-mode domain can be calculated for each term in the ~FRn vector using Eq. (1), resulting in

~UZRn ¼ ½
~U ZR0

~UZR1
~UZR2

~UZR3
~UZR4

~UZR5
~UZR6

~UZR7
�T

~UyRn ¼ ½
~UyR0

~UyR1
~UyR2

~UyR3
~UyR4

~UyR5
~UyR6

~UyR7
�T

~URRn ¼ ½
~URR0

~URR1
~URR2

~URR3
~URR4

~URR5
~URR6

~URR7
�T (19)

Since the circumference of the cylinder is discretized into a finite number of points (Nring), the Nyquist criterion restricts
the largest ring-mode to Nring/2. Furthermore, Eq. (9) states that ~UZRn and ~URRn are even functions and ~UyRn is an odd
function. Therefore the ring-mode coefficients are symmetric and anti-symmetric, respectively. The ring-mode coefficients
are written in standard inverse DFT (IDFT) input notation as follows:

~UZRn ¼ ½
~U ZR0

~UZR1
~UZR2

~UZR3
~UZR4

~UZR3
~UZR2

~UZR1
�T

~UyRn ¼ ½0 �i ~UyR1
�i ~UyR2

�i ~UyR3
0 i ~UyR3

i ~UyR2
i ~UyR1

�T

~URRn ¼ ½
~URR0

~URR1
~URR2

~URR3
~URR4

~URR3
~URR2

~URR1
�T (20)

Performing the IDFT results in a set of transfer function terms

~HZiR1

~HyiR1

~HRiR1
(21)

where each term represents the displacement (Z, y, or R) of the ith node due to a radial point-load at node 1. This process is
repeated to determine the transfer functions at every node due to loads acting in all three directions.

The transfer function terms can be arranged in matrix form as follows:

~UZ

~Uy
~UR

8><
>:

9>=
>;¼

~HZiZj
~HZiyj

~HZiRj

~HyiZj
~Hyiyj

~HyiRj

~HRiZj
~HRiyj

~HRiRj

2
6664

3
7775
x

~FZ

~Fy
~FR

8><
>:

9>=
>;¼ ~H ~F (22)

which describes, for a given wavenumber x, the displacements at all nodes due to an arbitrary load applied with frequency
o. An IDFT is used to transform the set of transfer functions into the spatial domain, Htunnel and Hsoil, thus the coupled
equations of motion for the tunnel–soil system can be written in the spatial domain as

U¼ ðIþHtunnelH
�1
soilÞ
�1Uorig (23)

The wavenumber sampling and maximum values must be selected to ensure the discretization is sufficient to capture
details at localized peaks as well as the far-field disturbance of travelling waves. The results from a convergence study
investigating the effect of wavenumber properties on the response of a free-tunnel are shown in Fig. 5. The tunnel is
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Fig. 5. Wavenumber parameter convergence testing for free-tunnel model subjected to a radial point-load at x=0.
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subjected to a radially acting unit point-load at x=0 and the radial displacement response in the spatial domain along the
base of the tunnel is plotted to determine convergence.

Fig. 5(a) shows the response at 15 Hz; at this low frequency the wavelengths are relatively long thus fine discretization
in the wavenumber domain is required to capture the corresponding small wavenumbers. As the number of samples
between �2poxo2p is increased, the solution tends towards the converged solution at N=214 samples. At higher
frequencies the wavelengths are relatively short thus the maximum wavenumber must be increased to capture the
localized peaks. Fig. 5(b) shows convergence of the solution at xmax ¼ 2p.

These wavenumber parameters (N=214 and xmax ¼ 2p) were found to be sufficient to capture the response in the free-
tunnel when the FST assembly is included and subjected to a point-load on the rail, as well as for the free-soil model
subjected to a point-load. As such they are used throughout the remainder of the investigation. Note that these parameters
result in a total model length of �4096 moxo4096 m with Dx¼ 0:5 m.

This discretized spatial formulation of PiP allows nonuniform interaction between the tunnel and surrounding soil
making it possible to simulate variable stiffness between the tunnel and soil, such as a void at the tunnel–soil interface.
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2.3. Including a void in the discrete model

To simulate a void at the tunnel–soil interface, individual matching nodes on the tunnel and soil cylinders can be
uncoupled. This allows the displacements of the two subsystems to differ at the void location while preventing any transfer
of force between the tunnel and the soil. The degrees of freedom for both the tunnel and the soil are rearranged to group
the coupled and uncoupled nodes:

Uc

Uu

( )
¼

Hcc Hcu

Huc Huu

" #
Fc

Fu

( )
(24)

where the subscripts c and u refer to the coupled and uncoupled degrees of freedom, respectively. Rewriting the continuity
equations (Eqs. (3) and (4)) for the displacement of the coupled nodes gives

Utunnelc
¼Htunnelcc

FcþHtunnelcu
FuþHtunnelcc

Rtunnelc
þHtunnelcu

Rtunnelu
(25)

Usoilc
¼Hsoilcc

Rsoilc
þHsoilcu

Rsoilu
(26)

where displacement continuity and force equilibrium requires

Utunnelc
¼Usoilc

(27a)

Rtunnelc
¼�Rsoilc

(27b)

Rtunnelu
¼�Rsoilu

(27c)

Assuming that no internal forces will be applied to the uncoupled nodes (i.e. Fu = 0) and recalling that no resultant
interface forces develop at these uncoupled nodes (i.e. Ru = 0), Eqs. (25) and (26) can be combined as

Uc ¼ ðIþHtunnelcc
H�1

soilcc
Þ
�1Htunnelcc

Fc (28)

Noting that Htunnelcc
Fc ¼Uorig

c Eq. (28) can be written as

Uc ¼ ðIþHtunnelcc
H�1

soilcc
Þ
�1Uorig

c (29)

which describes the displacement at the coupled degrees of freedom for the tunnel–soil model as a function of the
original free-tunnel displacements at the coupled nodes. Eq. (29) is in a useful form to perform parametric studies
of void parameters. Htunnel and Hsoil are the same for each case and need only be partitioned to include the appropriate nodes.
Uorig can be calculated relatively quickly and easily using the IDFT of Eq. (15); as Uorig is only a function of the FST and tunnel
parameters it is the same for all void cases. This allows for more efficient calculation when investigating numerous void
parameters.

The resultant interface loads can be back-calculated from Uc using

H�1
soilcc

Uc ¼Rc (30)

and Ru = 0. After rearranging the nodes back to the original order this resultant interface load vector can be used to
determine the soil response at any desired radius R using

UR ¼HsoilR
Rinterface (31)

where HsoilR
is derived in a similar way to the original soil transfer function at radius R. This formulation is also efficient for

parametric studies of void parameters; HsoilR
is the same for all void cases thus UR can be calculated quickly for any case

after the initial determination of the transfer function matrix.
This form of the solution can predict ground vibrations at any radius due to a dynamic load applied to the rail on the FST

assembly at a fixed location. It is now useful to consider moving loads.
Fig. 6. Schematic of simple vehicle model.
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2.4. Response due to a moving load

Amongst many others, Hussein and Hunt [31] show that a predominant loading mechanism on the tunnel invert is due
to rail-roughness at the wheel–rail interface. For the purposes of the current investigation this loading mechanism is
Fig. 7. Geometric parameters for model and mesh.

Table 3
Soil model properties.

Tunnel Soil

Elastic modulus (GPa) 50(1+0.1i) 0.55(1+0.1i)

Density (kg / m3) 2500 2000

Poisson’s ratio 0.3 0.44

P-wave speed (m/s) 5200 950

S-wave speed (m/s) 2800 310

Fig. 8. Observation plane centered over the tunnel at height 15 m.

Table 2
Third-octave passbands.

Reference name (Hz) Passband (Hz)

20 17.8–22.4

25 22.4–28.2

31.5 28.2–35.5

40 35.5–44.7

50 44.7–56.2

63 56.2–70.8

80 70.8–89.1

100 89.1–112

125 112–141

160 141–178

200 178–224
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simplified to a single, moving point-load acting on the rail surface. The load is calculated using a single degree-of-freedom
model of a 500 kg mass moving at constant speed along a rough rail (Fig. 6) as

FðxÞ ¼MaðxÞ ¼�Mo2zðxÞ (32)
Fig. 9. Validation of discrete model against PiP at 15 Hz; three test cases shown for varying node density around the tunnel circumference (N/C) and axial

length (xmax). (a) Origin (0,0), (b) origin (5,0), (c) origin (10,0) and (d) origin (15,0).
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The rail-roughness profile is randomly distributed thus the theory of random vibrations [36] must be used to predict the
resultant soil response. As the velocity of the moving load is much less than the shear-wave speed of the surrounding soil a
quasi-stationary approximation of a non-stationary random vibration can be used [37]. This implies that the Doppler effect
of the moving load is negligible so the load at any given point in time can be assumed a stationary random-process (i.e. the
mean, mean square and standard deviation are all independent of time).
Fig. 10. Validation of discrete model against PiP at 200 Hz; three test cases shown for varying node density around the tunnel circumference (N/C) and

axial length (xmax). (a) Origin (0,0), (b) origin (5,0), (c) origin (10,0) and (d) origin (15,0).
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Frederich [38] provides an empirical formula for the single-sided rail-roughness spectrum based on track
measurements. The average rail-roughness is calculated as follows:

SdðoÞ ¼
a

v bþ
o

2pv

� �3
(33)

where v is the load velocity (m/s), o is the forcing frequency (rad/s), and a and b are constants describing the rail
unevenness (1:31� 10�2 mm2=m2 and 2:94� 10�2=m, respectively). Using Eq. (32) and standard random vibration theory
[36], the force spectrum magnitude can be written as

Sf ðoÞ ¼ jmo2j2SdðoÞ (34)

The discrete void model is used to determine the transfer function (Hij) describing the displacement at an arbitrary
point ri in the surrounding soil for a point-load applied to the rail at xj. The velocity spectrum magnitude at this arbitrary
point is given by

SvðoÞ ¼ jðioÞHijj
2Sf ðoÞ (35)
Fig. 11. Discrete model response for no void at (a) 25, (b) 50, (c) 100 and (d) 160 Hz third-octave passbands; response in rms velocity (dB, ref 1 m/s).
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This velocity spectrum can be used to provide a measure of the mean-square velocity over a frequency band using the
following property:

E½v2�o1-o2
¼ 2

Z o2

o1

SvðoÞdo (36)
Fig. 12. Difference between discrete model and PiP response for no void at (a) 25, (b) 50, (c) 100 and (d) 160 Hz third-octave passbands; response in rms velocity

(dB, ref 1 m/s).

Table 4
Void parameters—sensitivity to void length (VL) and void sector angle (VA).

Case Void sector angle (deg) Void length (m)

VL-1 67.5 2

VL-2 67.5 4

VL-3 67.5 6

VL-4 67.5 8

VA-1 45.0 4

VA-2 67.5 4

VA-3 90.0 4

VA-4 112.5 4



Fig. 14. Close-up schematic of the void showing the void parameters.

Fig. 13. Schematic showing void at tunnel–soil interface and observation plane centered over the tunnel at height 15 m.

Fig. 15. Particle velocity response in dB (rms, ref 1 m/s) for case VA-3 at h=10 m as load moves along tunnel invert.
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The rms velocity over the frequency band is simply the square-root of Eq. (36). Note this derivation of the o1-o2

passband rms velocity is equivalent to having a perfect passband filter which eliminates all input frequencies outside the
band of interest. Although this is an idealized value it is still a useful measure of the vibration levels at different frequency
passbands. The vertical rms velocities are determined in third-octave frequency bands according to Table 2.

The final step is to consider the slow variation of the rms particle velocity as the load travels along the length of the
tunnel. This is best shown through the example detailed in Section 4. First it is sensible to validate the discrete model of a
tunnel in continuous contact with the soil against PiP.
3. Validation of discrete model against PiP

A schematic of the 3D tunnel–soil interface used in the semi-analytical model is shown in Fig. 7; Table 3 lists the set of
sample material properties used in the simulation of a 0.25 m thick concrete tunnel and surrounding soil. The vertical
particle velocities are calculated for a 30 m� 30 m observation plane 15 m above the center of the tunnel as depicted in
Fig. 8.

Recall that the free-tunnel and free-soil models were deemed to converge in the wavenumber domain for N=214 and
xmax ¼ 2p. This is equivalent to a total model length of �4096 moxo4096 m with Dx¼ 0:5 m. If, for example, 32 nodes are
used around the circumference of the interface with three degrees of freedom each, this would result in a total of more
than 1.5 million degrees of freedom; this is an impractical number of DOF’s for a model which is intended for parametric
studies with short computational times. When the tunnel is coupled to the soil model the system damping is greatly
increased due to geometric decay and material damping in the soil. The hypothesis is that much less of the model in the
axial direction will be required as the travelling waves will quickly decay.
Fig. 16. Insertion gain response in dB (rms, ref 1 m/s) for case VA-3 at h=15 m as load moves along the tunnel invert.
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To test this hypothesis a convergence test is performed to ensure that the spatial parameters of the tunnel–soil interface
are sufficient to adequately represent the continuous bond at this interface. A harmonic load is applied to the rail at x=0 at
15 and 200 Hz (i.e. the limits of the frequency range of interest) and the displacement response is calculated along four
horizontal lines 15 m above the tunnel extending perpendicular to the tunnel axis as depicted in Figs. 9 and 10. The effect
of circumferential nodal density (nodes/circumference or N/C) and the half length of the model (xmax) are illustrated in
figures. Three representative sets of parameters are shown in comparison to the continuous PiP solution. The results are
deemed to converge when refining the parameters results in less than a 1 percent relative difference at any x-location from
the previous case; convergence was found to occur using 32 nodes per circumference with xmax = 40 m. As shown in Figs. 9
and 10 these model parameters result in predictions which agree well with the continuous PiP solution at the given
locations and frequencies. The maximum difference between the two model predictions is 0.1 dB which occurs at y=15 m
and 15 Hz (Fig. 9(d)).

The vertical rms particle velocities over the observation plane are predicted by the void-free discrete model using N/C=
32 and xmax = 40 m. The results for the 25, 50, 100 and 160 Hz third-octave passbands are shown in Fig. 11 as a
representative sample of the results; results are plotted in dB (rms, ref 1 m/s) when the moving load is at x=0. These results
Fig. 17. Insertion gain response in dB(rms, ref 1 m/s) for case VL-1 (2 m� 67:53) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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are compared to the PiP prediction in Fig. 12, where the difference between the two models are plotted in dB for the same
four passbands; a positive difference signifies the discrete model predicts larger values than PiP.

The results from the two models show good agreement at all passbands. The maximum difference is (+0.9,�0.7) dB
occurring at the 25 Hz passband shown in Fig. 12(a); differences at higher frequency passbands are significantly lower
(o0:1 dB). The larger error at the low passband frequency is attributed to the truncation of the longest wavelengths by the
reduced model length xmax = 40 m, hence the areas of greatest error occur at large x-values rather than at the center of the
model. This relatively small difference between two different numerical models suggests that the discrete model is valid
for a continuously coupled tunnel–soil interface. The final section considers the same tunnel–soil parameters but with the
inclusion of a void.
4. Simulating voids using the discrete model

To quantify the effect of a void on vertical response compared to a continuously bonded model a number of different
void configurations are investigated; Table 4 lists the void parameters. A schematic showing the tunnel, observation plane,
Fig. 18. Insertion gain response in dB (rms, ref 1 m/s) for case VL-2 (4 m� 67:53) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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moving load and void placement is presented in Fig. 13 with a schematic showing the void parameters in Fig. 14. For all
cases the void is centered on the top of the tunnel at (x,y) = (0,0) in the observation plane.

As an example of the response due to a moving load, the discrete model is used to predict the vertical particle velocity
response for the case of a 4 m� 90:03 void (VA-3) subjected to a moving point-load oscillating at 100 Hz. The nine figures
presented in Fig. 15 represent the response as the load position (LP) moves from left to right through the tunnel
(�12 m-12 m in 3 m intervals). When the load is relatively far from the void (LP1–LP2) the response is symmetric in both
the x and y directions and seemingly unaffected by the presence of the void. As the load approaches the void location the
response around the void location begins to change, as seen in the loss of x-direction symmetry developing at LP3. This
void-effect remains visible through LP7 until the load is again sufficiently far away such that the void has little effect on the
predicted particle velocity.

To better illustrate the effect of the void the insertion gain is calculated for the same case as shown in Fig. 16. Insertion
gain is defined as the difference between the results for the void model and the continuously coupled discrete model at the
same observation points and is reported in dB (rms, ref 1 m/s); a positive insertion gain signifies an increase in rms particle
velocity due to the presence of a void at the tunnel–soil interface. The benefit of using the insertion gain method is seen at
LP1 where a void-effect is visible even when the moving load is relatively far from the void location (compare to LP1 in
Fig. 19. Insertion gain response in dB (rms, ref 1 m/s) for case VL-3 (6 m� 67:53) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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Fig. 15 where there is little evidence of disturbance due to the void). There is a distinctive ‘‘wake-effect’’ which causes small
areas of velocity reduction by up to approximately 2.3 dB, as well as a wave energy localization behind the tunnel causing
an increase of approximately 3.1 dB. The effect of the void increases as the moving load approaches the void location.
Fig. 20. Insertion gain response in dB (rms, ref 1 m/s) for case VL-4 (8 m� 67:53) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.

Table 5
Peak vertical insertion gain (IG) for void length sensitivity study at 25, 50, 100 and 160 Hz passbands measured in dB (rms, ref 1 m/s).

Case 25 Hz 50 Hz 100 Hz 160 Hz

VL-1 (�0.0,+0.1) (�0.3,+0.5) (�1.3,+1.5) (�0.9,+3.3)

VL-2 (�0.0,+0.2) (�1.7,+2.0) (�0.9,+2.7) (�3.4,+8.5)

VL-3 (�0.0,+0.4) (�2.2,+2.6) (�1.4,+3.4) (�5.2,+8.3)

VL-4 (�0.0,+0.4) (�1.5,+2.8) (�3.4,+3.9) (�5.6,+8.1)
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Fig. 21. Vertical response of tunnel at (a) 25 and (b) 160 Hz.

Fig. 22. Insertion gain response in dB (rms, ref 1 m/s) for case VA-1 (4 m� 453) at four representative third-octave frequency passbands; moving load at x=0.

(a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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The average insertion gain over the observation plane reaches a maximum when the load is directly under the void (LP5)
with areas of (�3.4,+4.2) dB in the near-field of the void.

This case study suggests the void has a significant effect when the load is directly under the void as well as a moderate
effect when the load is relatively far from the void. As the average IG value reaches a maximum when the load is directly
under the void, results for the void sensitivity studies will be presented for this load location only. It should be noted that
the wake-effect is present in all cases when the load is reasonably far from the void location. The results for the two
sensitivity studies are presented in the following subsections: void length sensitivity and void sector angle sensitivity.

4.1. Results for void length sensitivity study

The effect of void length on vertical rms velocity response at different third-octave passbands is investigated for a 67:53

sector angle using four void lengths: 2, 4, 6 and 8 m (see Table 4). The observation plane responses are presented in
Figs. 17–20.

A trend common in all passbands is the IG magnitude increases as the length of the void is increased. For example, the
peak IG values at the 100 Hz passband increase from (�1.3,+1.5) dB for case VL-1 to (�3.4,+3.9) dB for case VL-4. Table 5
Fig. 23. Insertion gain response in dB (rms, ref 1 m/s) for case VA-2 (4 m� 67:53) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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lists the peak insertion gains for the four cases at the passbands listed. Furthermore, the density of increased IG values
increases with void length; only small areas of insertion gain with magnitude greater than 1 dB are visible in the 50 Hz
passband for case VL-1 while the bulk of the observation plane has IG greater than 1 dB for case VL-4 with substantial areas
of 2 dB or more.

This variation in response with void length is attributed to how the vibration energy is transformed into pressure and
shear-waves when a void is present at the tunnel–soil interface. Since there is no force transmission at the void site, motion
of the tunnel at this location will not directly result in wave propagation. Fig. 21 shows the vertical response of the tunnel
for a void-free case at 25 and 160 Hz. The average wavelength at 25 Hz is approximately 13 m while at 160 Hz it is
approximately 5 m. For case VL-1 the void is only 2 m long which is relatively small compared to the 25 Hz wavelength
thus it has little effect on the response at the observation plane (Fig. 17(a)); the bulk of the wavelength bridges the void. At
160 Hz the void length is more substantial relative to the wavelength thus it has a greater effect (Fig. 17(d)); the void
accounts for almost half a wavelength thus a significant amount of energy is not transmitted to the soil above the tunnel
resulting in peak IG values of (�0.9,+3.3) dB. The lack of force transmission at the void results in higher interface forces
elsewhere around the tunnel thus energy localization in the wavefronts occurs relative to the void-free case. This explains
why the void causes IG losses at some locations (no force transmission across the void) and IG increases at others (energy
Fig. 24. Insertion gain response in dB (rms, ref 1 m/s) for case VA-3 (4 m� 903) at four representative third-octave frequency passbands; moving load at

x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.
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localization to other areas of the tunnel–soil interface). However, as the void length is relatively small compared to the
wavelengths the effect is mainly constrained to the near-field response (i.e. the area over the void).

For case VL-4 the void length is 8 m; this is a substantial amount of the low frequency wavelength thus the insertion
gain is more significant than in the VL-1 case. However, the IG is still less than 1 dB which is relatively small and within the
error range of the model (see Section 4). The 8 m void is large compared to the 160 Hz wavelength thus a large amount of
vibrational energy is not transmitted through the top of the tunnel–soil interface compared to the void-free case. The result
is peak insertion gains of (�5.6,+8.1) dB. This is a significant change compared to the void-free case. Also the effect of the
void extends further into the far field of the observation plane as a significant amount of vibrational energy has to be
redistributed around the tunnel–soil interface due to the length of the void.

4.2. Results for void sector angle sensitivity study

The effect of void sector angle on vertical rms velocity response at different third-octave passbands is investigated for a
4 m void length using four void sector angles: 453, 67:53, 903 and 112:53 (see Table 4). The observation plane responses are
presented in Figs. 22–25.
Fig. 25. Insertion gain response in dB (rms, ref 1 m/s) for case VA-4 (4 m� 112:53) at four representative third-octave frequency passbands; moving load

at x=0. (a) 25, (b) 50, (c) 100 and (d) 160 Hz passbands.



Table 6
Peak vertical insertion gain (IG) for void sector angle sensitivity study at 25, 50, 100 and 160 Hz passbands measured in dB (rms, ref 1 m/s).

Case 25 Hz 50 Hz 100 Hz 160 Hz

VA-1 (�0.0,+0.1) (�0.6,+0.9) (�0.7,+2.2) (�1.9,+7.3)

VA-2 (�0.0,+0.2) (�1.7,+2.0) (�0.9,+2.7) (�3.4,+8.5)

VA-3 (�0.0,+0.5) (�2.8,+2.4) (�1.0,+3.1) (�3.2,+9.8)

VA-4 (�0.1,+0.9) (�3.4,+2.6) (�1.0,+3.4) (�2.0,+10.9)
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Fig. 26. Radial response of tunnel at x=0 for (a) 25 and (b) 160 Hz.
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Again a common trend in all passbands is the increase in IG magnitude as the sector angle of the void is increased. For
example, the peak IG values at the 100 Hz passband increase from (�0.7,+2.2) dB for case VA-1 to (�1.0,+3.4) dB for case
VA-4. Table 6 lists the peak insertion gains for the four cases at the given passbands. However, unlike the void length study,
the density of insertion gain over the observation plane does not largely depend on void sector angle, especially in the
higher frequency passbands. The 160 Hz passband response tends to grow in magnitude as the void angle is increased
(Figs. 22(d)–25(d)) while the distribution remains relatively constant.

This response is again attributed to the disruption of force transmission between the tunnel and the soil at the void
location, but in the case of the void sector angle the response around the circumference of the tunnel is deemed to be the
governing factor. Fig. 26 shows the radial response of the tunnel at x=0 for a void-free case at 25 and 160 Hz. The average
circumferential wavelength at 25 Hz is approximately 3603 while at 160 Hz it is approximately 503.

For case VA-1 the void sector angle is 453 which is relatively small compared to the wavelength at 25 Hz. In a similar
fashion to the VL-1 case, the wavelength bridges the void which essentially negates its presence. At 160 Hz the void angle is
basically the same as the circumferential wavelength thus a large portion of the vibration energy is not transmitted
through the top of the tunnel–soil interface resulting in significant insertion gains with peak values of (�1.9,+7.3) dB.

By case VA-4 the void sector angle is 112:53 which is a significant void for all frequency passbands. As in the void length
study, the void has little effect on observation plane response for the 25 Hz passband (o1 dB) even at this large void angle;
the insertion gain at higher passbands is significant, reaching a peak of (�2.0,+10.9) dB for the 160 Hz passband.

5. Conclusions

A semi-analytical model is developed to investigate the effect of voids around an underground railway tunnel on
ground vibration. The method derives the discrete transfer functions for the tunnel and soil from the Pipe-in-Pipe
continuous solution. The void is simulated by uncoupling the appropriate nodes to prevent the transfer of force between
the tunnel and the soil. A number of void geometries are investigated to determine how sensitive the vertical response of
the soil is to changes in void size. The results from this investigation show that relatively small voids (4 m� 903) can
significantly affect the rms velocity predictions at higher frequencies (peak insertion gain: (�3.4,+8.5) dB for 160 Hz
passband) while they have less effect at lower frequencies (peak insertion gain: (�1.7,+2.0) dB for 50 Hz passband). The
sensitivity to void length and void sector angle was also investigated and results suggest that rms velocity predictions are
sensitive to both parameters. The findings from this study suggest that the uncertainty associated with assuming a perfect
bond at the tunnel–soil interface in an area with known voidage can reasonably reach 75 dB for frequencies between 100
and 200 Hz and thus should be considered in the design process.
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Appendix A

A.1. Tunnel

For displacements symmetric about y¼ 0, ~Htunnel ¼ ðaðn2�1Þ=EhÞ ~A
�1

, where a is the mid-thickness radius of the tunnel,
n is Poisson’s ratio, E is the elastic modulus, h is the thickness of the tunnel wall, and the coefficients of ~A are as follows:
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where r is density, o is forcing frequency, x is wavenumber, and n is ring-mode. For anti-symmetric displacements about
y¼ 0, a12, a21, a23 and a32 must be multiplied by �1.

A.2. Soil

For displacements symmetric about y¼ 0, ~Hsoil ¼
~U1r ¼ a

~T
�1

1r ¼ a
, where the coefficients are as follows:
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where K is the modified Bessel function of the second kind, c1 is pressure-wave speed, c2 is shear-wave speed, l is the shear
modulus, a2 ¼ x2

�o2=c2
1, and b2

¼ x2
�o2=c2

2. For anti-symmetric displacements about y¼ 0, coefficients 12, 13, 21, 32 and
33 of ~U1 and ~T1 must be multiplied by �1.
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